skip to main content


Search for: All records

Creators/Authors contains: "Pires, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Swimming organisms may actively adjust their behavior in response to the flow around them. Ocean flows are typically turbulent and are therefore characterized by chaotic velocity fluctuations. While some studies have observed planktonic larvae altering their behavior in response to turbulence, it is not always clear whether a plankter is responding to an individual turbulence fluctuation or to the time-averaged flow. To distinguish between these two paradigms, we conducted laboratory experiments with larvae in turbulence. We observed veliger larvae of the gastropod Crepidula fornicata in a jet-stirred turbulence tank while simultaneously measuring two components of the fluid and larval velocity. Larvae were studied at two different stages of development, early and late, and their behavior was analyzed in response to different characteristics of turbulence: acceleration, dissipation and vorticity. Our analysis considered the effects of both the time-averaged flow and the instantaneous flow, around the larvae. Overall, we found that both stages of larvae increased their upward swimming speeds in response to increasing turbulence. However, we found that the early-stage larvae tended to respond to the time-averaged flow, whereas the late-stage larvae tended to respond to the instantaneous flow around them. These observations indicate that larvae can integrate flow information over time and that their behavioral responses to turbulence can depend on both their present and past flow environments. 
    more » « less
  2. Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata , to acclimate to reduced pH environments. 
    more » « less